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Spinor Representation of Electromagnetic Fields
on Noncommutative Spaces
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We apply Campolattaro’s spinor representation of the electromagnetic field to noncom-
mutative spaces. The spinor representation of the (self-dual) electromagnetic field on
noncommutative spaces is obtained.
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1. INTRODUCTION

It is well known that the electromagnetic field can be written in a number of
different forms. Campolattaro (1980a,b) started with the analysis of the Maxwell
equations by writing the electromagnetic field tensor in the spinor form, using the
standard Dirag’-matrices. Vaz and Rodrigues (1993, 1997) expressed the spinor
representation of electromagnetic field in the Clifford bundle formalism.

The spinor representation of electromagnetic fields plays an important role
in our understanding of the structure of space—time. One of us (Hu and Hu, 1998)
suggested the relation between the Campolattaro’s formalism and the Witten’s
monopole equations (Witten, 1994). See also Vaz (1997).

On the other hand, the field theories on noncommutative spaces are of great
interest now due to the recent development of the superstring theory. It was shown
that in the presence of a background Neveu-Schwarz B-field, the gauge theory
living on D-branes becomes noncommutative (Coretesd., 1998). On the basis
of existence of the different regularization procedures in string theory, Seiberg and
Witten (1999) claimed that certain noncommutative gauge theories are equivalent
to commutative ones. In particular, they argued that there exists a map from a
commutative gauge field to a noncommutative one, which is compatible with the
gauge structure of each. This map has become known as the Seiberg—Witten map.
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For the discussions of honcommutatie(1) gauge theory (Maxwell the-
ory), see, e.g., Martin and Sanchez-Ruiz (1999), Hayakawa (2000), Sheikh-Jabbari
(2000), Bichlet al. (2001), Cai (2001), Chaichiast al. (2001), Guralniket al.
(2001), Okawa and Ooguri (2001), Grimstreipal. (2001).

In this paper, we apply Campolattaro’s formulation of the electromagnetic
field tensorF*" in the bilinear formF*’ = 'S ¥ to noncommutative spaces.
The spinor representation of the electromagnetic field on noncommutative spaces
is obtained.

2. CAMPOLATTARO’S SPINOR REPRESENTATION
OF ELECTROMAGNETIC FIELDS

Campolattaro (1980a,b) started with the analysis of the Maxwell equations
by writing the electromagnetic field tensBr*” in the equivalent bilinear form

Fro = ISy, (1)

whereu, v =0, 1, 2, 3W is a Dirac spinor, an@ = Wy is the Dirac conjugation
of W. §*¥ is the spin operater defined by

$v =l @)
and they’s are the Dirac matrices satisfying
Yy vyt =20", 3)

with n*”, the Minkowski metric tensor, given by*” =diag(1,-1, -1, —1).
In this representation the dual tenset" is given by
Frr = UySgvy. (4)

From now on, the Einstein sum convention is adopted throughout. The
Maxwell equations read (a comma followed by an index represents the partial
derivative with respect to the variable with that index)

(Vs"w), =i, (®)
(¥y°s"¥),, =0. (6)

Moreover, the duality (Misner and Wheeler, 1957; Rainich, 1925) by the complex-
ion a, namely

—uv

F"' = F* cosa + F™ sina, 7

is equivalent to a Touschek—Nishijima transformation (Nishijima, 1957; Touschek,
1957) for the spinoW to the spinon’ given by

Y = @2y, (8)
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with
e™ = cosa + y° sine, (9)
and
vy
cosy = —, (10)
P
. WS
sina = ——, (11)
0

p being the positive square root of

p? = (BW)? + (Ty°w)%, (12)
Campolattaro showed that the two spinor Maxwell equations (5) and (6) are equiv-
alent to a single nonlinear first-order equation for the spinor, namely

5

yiw = —iy"eya
’ P

{Im(W ,v) — j, — y>Im(¥ ,y°V)} . (13)

3. SPINOR REPRESENTATION OF ELECTROMAGNETIC
FIELDS ON NONCOMMUTATIVE SPACES

3.1. Moyal * Product

We consider a noncommutative space with coordin&tesharacterized by
the algebra

%, %] =i6", (14)

wherefd'l is an antisymmetric constant tensor with = —61 . Field theories in

such aspace can be realized as a deformation of the usual field theory in an ordinary
(commutative) space by changing the product of two fields to the Mopedduct
(Moyal, 1949) defined by

i o 0
1909 = x50 ) 190Dy (15)
Note that the first term on the right side gives the ordinary product. Also the
commutator (14) is realized as

X, x)], = x" s x) —xJ s x =igl, (16)

We also consider the case of matrix-valued functidnand g. In this case, we
define the Moyalx product to be the tensor product of matrix multiplication
with the * product of functions as just defined. The extendegroduct is still
associative.
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3.2. Seiberg-Witten Map

Let A; be a noncommutative gauge field on a noncommutative space, whose
coordinates obeyq, x/], =i6'l . Denote byA; the counterpart of\, the ordinary
gauge field on the ordinary space. The map betwgemdA, , called the Seiberg—
Witten map (Seiberg and Witten, 1999), is characterized by the differential equation
with respect t@,

SA6) = —%59”(['&1' s (A + Fii) + @Ok A + Fii) * Ajl, (17)
with the initial condition
A =0)=A. (18)
Herex is the Moyalx product. The field strengtﬁij is defined as
Fii=0A —A—iAxA +iA *A. (19)

The differential equation (17) is known as the Seiberg—Witten equation (Seiberg
and Witten, 1999). The theory obtained in this way reduces to conventilgiN)
Yang—Mills theory ford — 0. The rank 1 case\ = 1) corresponds to the Abelian
U (1) gauge theory (Maxwell electromagnetic theory)det 0.

For the rank 1 case, the gauge transformatioA¢X) is given by

A (x) = U(X) 5 A (X) % U™2(x) — iU (x) % U (%), (20)

whereU (x) = (ex)'*® for real functionsi(x), and the éx) is defined by the usual
Taylor expansion, with all products &fs replaced by the ones. One can find that
U1 =(ex)""*™ satisfied) ~* « U = 1. It should be noticed that the non-Abelian
character of the above gauge transformations is due to the noncommutativity of
the space.

3.3. Spinor Representation of Electromagnetic Fields
on Noncommutative Spaces

Naively, to get a physical quantity on a noncommutative space, we simply
take this quantity on the corresponding commutative space and replace all products
by thex products.

We now introduce the spinor representation of the electromagnetic field on
the noncommutative space—tirewith coordinates* characterized by

[xX¥, X", = i6"".

Let F* be the noncommutative electromagnetic field\onF** can be written
in the following form:

Fro= WS s\, (21)
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whereu, v=0, 1, 2, 3.9 is a Dirac spinor onV with the initial condition
(6 = 0)= W. The constant Dirac matricess are the same as in the commutative
caseW = WyCisthe Dirac conjugation o . The spin operato®*’ = L[y*, "]
is the same as in Section 2.

Notice that (21) can also be written as

Fro— s S0,

In this spinor representation the noncommutative counterpart of the dual tensor
F~v is given by

Frv — §p5S™ 5 . (22)

FromFH’ = %e’”"‘ﬁ F.p, Wheree#"*# is an antisymmetric Levy—Civita tensor with
€= _i, one has

Fre = %emﬁ Fup = F. (23)
Therefore, Eq. (22) can be rewritten as
Frv — §p 59 4 . (24)
The noncommutative Maxwell equations read
s« by, =, (25)
(B9« ¥), = 0. (26)

Here|" is the noncommutative counterpartjof. o
Denotes = p? = (W W)? + (U °W)?, andk = WV + y5Wy W, The noncom-
mutative counterpaet is given by

e = (x4 (Tysxb)2 27)
The noncommutative counterpartiofeads
R=0x0+9y50y5 0. (28)
It follows that the nhoncommutative Maxwell equations are equivalent to the fol-
lowing equation:
yHe x \f/,,L = —iyfk % {Im(@vﬂ x W) — jAM —y° Im(E,My5 * \i')} xW.  (29)

Remark The noncommutativity breaks the symmetry. The te‘ﬁgﬁ in
Eqg. (13) does not exist in the above equation. Instead, it geneeraiadolc‘ on
the two sides of the equation, respectively.
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3.4. Spinor Representation of Self-Dual Electromagnetic
Fields on Noncommutative Spaces

From Egs. (21) and (24), one has
~ 1 -~ x
F,ij = E(F/w + F/w)

l+y5

= E 2 S“} B3 \ij
Denote:° ¥ = &; then the self-dual part of the electromagnetic field\ois
given by
B =S, b, (30)
From Egs. (25) and (26), one has
. 1.
" F;v = E Jv.

Equation (30) has the equivalent form
- - - R 1-
|m(d>y“y“*8‘,(b> +Im(& 5 ®) + S = 0. (31)
One can verify that the positive chirality spin@rsatisfies the following equation:

pH(Dx D)5 D, =i {|m($ xd,) + %j}} xyld. (32)

4. THE CASE OF REVISED MAXWELL EQUATIONS

Campolattaro (1990a,b) assumed that together with an electric cyyrent
there also exists a magnetic monopole curggntMaxwell equations read

Fo=1" (33)
Fruv =g (34)
There exists a spinor such that
FW = US™y, (35)
Fro = UySgvw, (36)

It was shown that the spinor equation (13) in the presence of magnetic monopoles
reads

Sa

y”w#:—iwe; (M@, W) — j,, — 5 [IM(@ %) — g, ]} w.  (37)
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It is straightforward to see that the noncommutative Maxwell equations in
the presence of magnetic monoples read
Foo=1" (38)

9" (39)

_Tn

Hv

o
There exists a spinoP such that

Fro— U™ % @, (40)

P = By59 « B, (41)

One can find that the spinor equation (29) in the presence of magnetic monopoles
reads

pre s« W, = —iyhg « {|m($,u w0y —, —y" [|m($,uy5 x @) - gﬂ]} « .

(42)
From Egs. (38) and (39), one has
A 1.~
aMFIv = E(J v+ 0.
From Egs. (40) and (41), we have
Fr,=®S,*®. (43)

One can also find that the positive chirality spiridin the presence of magnetic
monopoles satisfies the following equation:

PP« DY D, =i {lm@* d,)+ %(j‘u + gﬂ)} * yhd. (44)

5. DISCUSSION

We have proposed the spinor representation of the electromagnetic field on
the noncommutative space—time. The spinor equations we obtained include the
higher derivatives. This leads to the nonlocal interactions of the fields.

In the Minkowski space—time, one can find that the Maxwell equations in the
spinor form are not equivalent to the Dirac equation (Gsponer, 2002). In the cor-
responding noncommutative case, this claim is also true. Nevertheless, the spinor
representation of the electromagnetic field is important. For example, it provides
a powerful tool for us to study the topology of four-dimensional differential man-
ifolds (Witten, 1994; Hu and Hu, 1998).
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