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We apply Campolattaro’s spinor representation of the electromagnetic field to noncom-
mutative spaces. The spinor representation of the (self-dual) electromagnetic field on
noncommutative spaces is obtained.
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1. INTRODUCTION

It is well known that the electromagnetic field can be written in a number of
different forms. Campolattaro (1980a,b) started with the analysis of the Maxwell
equations by writing the electromagnetic field tensor in the spinor form, using the
standard Diracγ -matrices. Vaz and Rodrigues (1993, 1997) expressed the spinor
representation of electromagnetic field in the Clifford bundle formalism.

The spinor representation of electromagnetic fields plays an important role
in our understanding of the structure of space–time. One of us (Hu and Hu, 1998)
suggested the relation between the Campolattaro’s formalism and the Witten’s
monopole equations (Witten, 1994). See also Vaz (1997).

On the other hand, the field theories on noncommutative spaces are of great
interest now due to the recent development of the superstring theory. It was shown
that in the presence of a background Neveu-Schwarz B-field, the gauge theory
living on D-branes becomes noncommutative (Conneset al., 1998). On the basis
of existence of the different regularization procedures in string theory, Seiberg and
Witten (1999) claimed that certain noncommutative gauge theories are equivalent
to commutative ones. In particular, they argued that there exists a map from a
commutative gauge field to a noncommutative one, which is compatible with the
gauge structure of each. This map has become known as the Seiberg–Witten map.
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For the discussions of noncommutativeU (1) gauge theory (Maxwell the-
ory), see, e.g., Martin and Sanchez-Ruiz (1999), Hayakawa (2000), Sheikh-Jabbari
(2000), Bichlet al. (2001), Cai (2001), Chaichianet al. (2001), Guralniket al.
(2001), Okawa and Ooguri (2001), Grimstrupet al. (2001).

In this paper, we apply Campolattaro’s formulation of the electromagnetic
field tensorFµν in the bilinear formFµν =9Sµν9 to noncommutative spaces.
The spinor representation of the electromagnetic field on noncommutative spaces
is obtained.

2. CAMPOLATTARO’S SPINOR REPRESENTATION
OF ELECTROMAGNETIC FIELDS

Campolattaro (1980a,b) started with the analysis of the Maxwell equations
by writing the electromagnetic field tensorFµν in the equivalent bilinear form

Fµν = 9Sµν9, (1)

whereµ, ν= 0, 1, 2, 3.9 is a Dirac spinor, and9 =9†γ 0 is the Dirac conjugation
of 9. Sµν is the spin operater defined by

Sµν = i

4
[γ µ, γ ν ], (2)

and theγ ’s are the Dirac matrices satisfying

γ µγ ν + γ νγ µ = 2ηµν , (3)

with ηµν , the Minkowski metric tensor, given byηµν = diag(1,−1,−1,−1).
In this representation the dual tensorF̃µν is given by

F̃µν = 9γ 5Sµν9. (4)

From now on, the Einstein sum convention is adopted throughout. The
Maxwell equations read (a comma followed by an index represents the partial
derivative with respect to the variable with that index)

(9Sµν9),µ = j ν , (5)

(9γ 5Sµν9),µ = 0. (6)

Moreover, the duality (Misner and Wheeler, 1957; Rainich, 1925) by the complex-
ion α, namely

F
µν = Fµν cosα + F̃µν sinα, (7)

is equivalent to a Touschek–Nishijima transformation (Nishijima, 1957; Touschek,
1957) for the spinor9 to the spinor9 ′ given by

9 ′ = eγ
5α/29, (8)



P1: FHF

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465833 June 10, 2003 15:19 Style file version May 30th, 2002

Spinor Representation of Electromagnetic Fields on Noncommutative Spaces 501

with

eγ
5α = cosα + γ 5 sinα, (9)

and

cosα = 99

ρ
, (10)

sinα = 9γ 59

ρ
, (11)

ρ being the positive square root of

ρ2 = (99)2+ (9γ 59)2. (12)

Campolattaro showed that the two spinor Maxwell equations (5) and (6) are equiv-
alent to a single nonlinear first-order equation for the spinor, namely

γ µ9,µ = −i γ µ
eγ

5α

ρ

{
Im(9 ,µ9)− jµ − γ 5 Im

(
9 ,µγ

59
)}
9. (13)

3. SPINOR REPRESENTATION OF ELECTROMAGNETIC
FIELDS ON NONCOMMUTATIVE SPACES

3.1. Moyal * Product

We consider a noncommutative space with coordinatesx̂i characterized by
the algebra

[ x̂i , x̂ j ] = i θ i j , (14)

whereθ i j is an antisymmetric constant tensor withθ i j =−θ j i . Field theories in
such a space can be realized as a deformation of the usual field theory in an ordinary
(commutative) space by changing the product of two fields to the Moyal∗ product
(Moyal, 1949) defined by

f (x) ∗ g(x) = exp

(
i

2
θkl ∂

∂yk

∂

∂zl

)
f (y)g(z)|y=z=x. (15)

Note that the first term on the right side gives the ordinary product. Also the
commutator (14) is realized as

[xi , x j ]∗ ≡ xi ∗ x j − x j ∗ xi = i θ i j . (16)

We also consider the case of matrix-valued functionsf andg. In this case, we
define the Moyal∗ product to be the tensor product of matrix multiplication
with the ∗ product of functions as just defined. The extended∗ product is still
associative.
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3.2. Seiberg–Witten Map

Let Âi be a noncommutative gauge field on a noncommutative space, whose
coordinates obey [xi , x j ]∗ = i θ i j . Denote byAi the counterpart of̂Ai , the ordinary
gauge field on the ordinary space. The map betweenAi andÂi , called the Seiberg–
Witten map (Seiberg and Witten, 1999), is characterized by the differential equation
with respect toθ ,

δ Âi (θ ) = −1

4
δθ jk [ Â j ∗ (∂k Âi + F̂ki )+ (∂k Âi + F̂ki ) ∗ Â j ], (17)

with the initial condition

Âi (θ = 0)= Ai . (18)

Here∗ is the Moyal∗ product. The field strengtĥFi j is defined as

F̂ i j = ∂i Â j − ∂ j Âi − i Âi ∗ Â j + i Â j ∗ Âi . (19)

The differential equation (17) is known as the Seiberg–Witten equation (Seiberg
and Witten, 1999). The theory obtained in this way reduces to conventionalU (N)
Yang–Mills theory forθ→ 0. The rank 1 case (N= 1) corresponds to the Abelian
U (1) gauge theory (Maxwell electromagnetic theory) forθ = 0.

For the rank 1 case, the gauge transformation ofÂi (x) is given by

Â′i (x) = U (x) ∗ Âi (x) ∗U−1(x)− iU (x) ∗ ∂i U
−1(x), (20)

whereU (x)= (e∗)iλ(x) for real functionsλ(x), and the (e∗) is defined by the usual
Taylor expansion, with all products ofλ’s replaced by the∗ ones. One can find that
U−1= (e∗)−iλ(x) satisfiesU−1 ∗U = 1. It should be noticed that the non-Abelian
character of the above gauge transformations is due to the noncommutativity of
the space.

3.3. Spinor Representation of Electromagnetic Fields
on Noncommutative Spaces

Naively, to get a physical quantity on a noncommutative space, we simply
take this quantity on the corresponding commutative space and replace all products
by the∗ products.

We now introduce the spinor representation of the electromagnetic field on
the noncommutative space–timeV with coordinatesxµ characterized by

[xµ, xν ]∗ = i θµν.

Let F̂µν be the noncommutative electromagnetic field onV . F̂µν can be written
in the following form:

F̂µν = 9̂Sµν ∗ 9̂, (21)



P1: FHF

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465833 June 10, 2003 15:19 Style file version May 30th, 2002

Spinor Representation of Electromagnetic Fields on Noncommutative Spaces 503

whereµ, ν= 0, 1, 2, 3.9̂ is a Dirac spinor onV with the initial condition
9̂(θ = 0)=9. The constant Dirac matricesγ ’s are the same as in the commutative
case.9̂ = 9̂†γ 0 is the Dirac conjugation of̂9. The spin operatorSµν = i

4[γ µ, γ ν ]
is the same as in Section 2.

Notice that (21) can also be written as

F̂µν = 9̂ ∗ Sµν9.

In this spinor representation the noncommutative counterpart of the dual tensor
F̃µν is given by

ˆ̃Fµν = 9̂γ 5Sµν ∗ 9̂. (22)

FromF̃µν = 1
2ε
µναβFαβ , whereεµναβ is an antisymmetric Levy–Civita tensor with

ε1234= − i , one has

ˆ̃Fµν = 1

2
εµναβ F̂αβ = ˜̂Fµν. (23)

Therefore, Eq. (22) can be rewritten as

˜̂Fµν = 9̂γ 5Sµν ∗ 9̂. (24)

The noncommutative Maxwell equations read

(9̂Sµν ∗ 9̂),µ = ĵ ν , (25)

(9̂γ 5Sµν ∗ 9̂),µ = 0. (26)

Here ĵ ν is the noncommutative counterpart ofj ν .
Denoteε= ρ2= (99)2+ (9γ 59)2, andκ =99 + γ 59γ 59. The noncom-

mutative counterpartε is given by

ε̂ = (9̂ ∗ 9̂)2+ (9̂γ 5 ∗ 9̂)2. (27)

The noncommutative counterpart ofκ reads

κ̂ = 9̂ ∗ 9̂ + γ 59̂γ 5 ∗ 9̂. (28)

It follows that the noncommutative Maxwell equations are equivalent to the fol-
lowing equation:

γ µε̂ ∗ 9̂,µ= − i γ µκ̂ ∗
{
Im(9̂ ,µ ∗ 9̂)− ĵ µ− γ 5 Im

(
9̂ ,µγ

5 ∗ 9̂
)}
∗ 9̂. (29)

Remark. The noncommutativity breaks the symmetry. The termeγ
5α

ρ
in

Eq. (13) does not exist in the above equation. Instead, it generates ˆε and κ̂ on
the two sides of the equation, respectively.
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3.4. Spinor Representation of Self-Dual Electromagnetic
Fields on Noncommutative Spaces

From Eqs. (21) and (24), one has

F̂+µν =
1

2
(F̂µν + ˜̂Fµν)

= 9̂ 1+ γ 5

2
Sµν ∗ 9̂.

Denote1+γ 5

2 9̂ = 8̂; then the self-dual part of the electromagnetic field onV is
given by

F̂+µν = 8̂Sµν ∗ 8̂. (30)

From Eqs. (25) and (26), one has

∂µ F̂+µν =
1

2
ĵ ν .

Equation (30) has the equivalent form

Im
(
8̂γ µγ ν ∗ ∂ν8̂

)
+ Im(8̂ ∗ ∂µ8̂)+ 1

2
ĵ µ = 0. (31)

One can verify that the positive chirality spinor8̂ satisfies the following equation:

γ µ(8̂ ∗ 8̂) ∗ 8̂,µ = i

{
Im(8̂ ∗ 8̂,µ)+ 1

2
ĵ µ

}
∗ γ µ8̂. (32)

4. THE CASE OF REVISED MAXWELL EQUATIONS

Campolattaro (1990a,b) assumed that together with an electric currentjµ,
there also exists a magnetic monopole currentgµ. Maxwell equations read

Fµν
,µ = j ν , (33)

F̃µν
,µ = gν . (34)

There exists a spinor such that

Fµν = 9Sµν9, (35)

F̃µν = 9γ 5Sµν9. (36)

It was shown that the spinor equation (13) in the presence of magnetic monopoles
reads

γ µ9,µ = −i γ µ
eγ

5α

ρ

{
Im(9 ,µ9)− jµ − γ 5

[
Im(9 ,µγ

59)− gµ
]}
9. (37)
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It is straightforward to see that the noncommutative Maxwell equations in
the presence of magnetic monoples read

F̂µν
,µ = ĵ ν , (38)

˜̂Fµν
,µ = ĝν . (39)

There exists a spinor̂9 such that

F̂µν = 9̂Sµν ∗ 9̂, (40)

˜̂Fµν = 9̂γ 5Sµν ∗ 9̂. (41)

One can find that the spinor equation (29) in the presence of magnetic monopoles
reads

γ µε̂ ∗ 9̂,µ=−i γ µκ̂ ∗
{
Im(9̂ ,µ ∗ 9̂)− ĵ µ− γ 5

[
Im
(
9̂ ,µγ

5 ∗ 9̂
)
− ĝµ

]}
∗ 9̂.

(42)

From Eqs. (38) and (39), one has

∂µ F̂+µν =
1

2
( ĵ ν + ĝν).

From Eqs. (40) and (41), we have

F̂+µν = 8̂Sµν ∗ 8̂. (43)

One can also find that the positive chirality spinor8̂ in the presence of magnetic
monopoles satisfies the following equation:

γ µ(8̂ ∗ 8̂) ∗ 8̂,µ = i

{
Im(8̂ ∗ 8̂,µ)+ 1

2
( ĵ µ + ĝµ)

}
∗ γ µ8̂. (44)

5. DISCUSSION

We have proposed the spinor representation of the electromagnetic field on
the noncommutative space–time. The spinor equations we obtained include the
higher derivatives. This leads to the nonlocal interactions of the fields.

In the Minkowski space–time, one can find that the Maxwell equations in the
spinor form are not equivalent to the Dirac equation (Gsponer, 2002). In the cor-
responding noncommutative case, this claim is also true. Nevertheless, the spinor
representation of the electromagnetic field is important. For example, it provides
a powerful tool for us to study the topology of four-dimensional differential man-
ifolds (Witten, 1994; Hu and Hu, 1998).
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